Equivalence between synaptic current dynamics and heterogeneous propagation delays in spiking neuron networks
نویسندگان
چکیده
Message passing between components of a distributed physical system is non-instantaneous and contributes to determine the time scales of the emerging collective dynamics like an effective inertia. In biological neuron networks this inertia is due in part to local synaptic filtering of exchanged spikes, and in part to the distribution of the axonal transmission delays. How differently these two kinds of inertia affect the network dynamics is an open issue not yet addressed due to the difficulties in dealing with the non-Markovian nature of synaptic transmission. Here, we develop a mean-field dimensional reduction yielding to an effective Markovian dynamics of the population density of the neuronal membrane potential, valid under the hypothesis of small fluctuations of the synaptic current. The resulting theory allows us to prove the formal equivalence between local and distributed inertia, holding for any synaptic time scale, integrate-and-fire neuron model, spike emission regimes and for different network states even when the neuron number is finite.
منابع مشابه
Impact of delayed interactions on the dynamical properties of spiking neural networks
Synaptic delays between neurons are a fundamental feature of neuronal networks, having direct implications on the characteristics of their collective dynamics. Delayed inhibition, for instance, is responsible for the emergence of neural rhythms [1], which are found across animal species, sensory systems and are associated with diverse cognitive functions [2]. Interaction delays also play a main...
متن کاملHow delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest
In recent years the study of the intrinsic brain dynamics in a relaxed awake state in the absence of any specific task has gained increasing attention, as spontaneous neural activity has been found to be highly structured at a large scale. This so called resting-state activity has been found to be comprised by nonrandom spatiotemporal patterns and fluctuations, and several Resting-State Network...
متن کاملEffects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation
The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic ...
متن کاملDeveloping a supervised training algorithm for limited precision feed-forward spiking neural networks
Spiking neural networks have been referred to as the third generation of artificial neural networks where the information is coded as time of the spikes. There are a number of different spiking neuron models available and they are categorized based on their level of abstraction. In addition, there are two known learning methods, unsupervised and supervised learning. This thesis focuses on super...
متن کاملThe Deferred Event Model for Hardware-Oriented Spiking Neural Networks
Real-time modelling of large neural systems places critical demands on the processing system’s dynamic model. With spiking neural networks it is convenient to abstract each spike to a point event. In addition to the representational simplification, the event model confers the ability to defer state updates, if the model does not propagate the effects of the current event instantaneously. Using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017